Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Biodelivery of Nerve Growth Factor and Gold Nanoparticles Encapsulated in Chitosan Nanoparticles for Schwann-Like Cells Differentiation of Human Adipose-Derived Stem Cells Publisher Pubmed



Razavi S1 ; Seyedebrahimi R1 ; Jahromi M1
Authors
Show Affiliations
Authors Affiliations
  1. 1. Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

Source: Biochemical and Biophysical Research Communications Published:2019


Abstract

The constant release of neurotrophic factors through a nanomaterial-based delivery system can be an important strategy in medical and pharmaceutical fields for nerve tissue engineering. The present study was aimed at encapsulating NGF and AuNPs in chitosan nanoparticles (NGF-CNPs and AuNPs-CSNPs) and its evaluation on the differentiation potential of human adipose-derived stem cells (h-ADSCs) to Schwann-like cells. The NGF-CNPs were prepared by ionotropic gelation method with tripolyphosphate (TPP) as a crosslinker. After synthesis and characterization of nanoparticles, NGF encapsulation efficiency and release profile were observed by Bradford assay. Next, the effects of NGF-CSNPs and AuNPs-CSNPs on h-ADSCs survival were assessed through MTT assay. Also, the efficacy of Schwann-like cells differentiation was assessed by immunocytochemistry and real-time RT-PCR for S100β and MBP markers. NGF encapsulation efficiency was found about 85% and controlled and sustained release of NGF was observed during 7 days in vitro (74.63 ± 2.07%). The findings revealed that these nanoparticles are cytocompatible. The immunocytochemical analysis indicated that NGF-CSNPs and AuNPs-CSNPs could significantly increase the differentiated rate and myelinogenic potential of Schwann-like cells (p < 0.05). Besides, the expression level of GFAP, S100β, and MBP demonstrated significant upregulation in NGF-CSNPs and AuNPs-CSNPs groups compared to the control group (p < 0.05). Hence, it can be proposed that NGF-CNPs and AuNPs-CSNPs are capable of controlled release with improving the ability of h-ADSCs differentiation to Schwann-like cells. Also, the results show the potential future application of this differentiation in nerve tissue regeneration. © 2019 Elsevier Inc.
6. What Are the Limitations of Chitosan Use in Non-Viral Gene Delivery and How to Overcome Them?, Biocompatible Nanomaterials: Synthesis, Characterization and Applications (2011)
Experts (# of related papers)
Other Related Docs
9. Incorporation of Chitosan Nanoparticles Into Silk Fibroin-Based Porous Scaffolds: Chondrogenic Differentiation of Stem Cells, International Journal of Polymeric Materials and Polymeric Biomaterials (2016)
18. The Beneficial Effect of Encapsulated Human Adipose-Derived Stem Cells in Alginate Hydrogel on Neural Differentiation, Journal of Biomedical Materials Research - Part B Applied Biomaterials (2014)
41. Nasal Delivery of Insulin Using Bioadhesive Chitosan Gels, Drug Delivery: Journal of Delivery and Targeting of Therapeutic Agents (2006)