Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Application of Stem Cell Technologies to Regenerate Injured Myocardium and Improve Cardiac Function Publisher Pubmed



Mardanpour P1, 2, 3 ; Nayernia K2, 3 ; Khodayari S3, 4 ; Khodayari H3, 4 ; Molcanyi M1 ; Hescheler J1, 2
Authors
Show Affiliations
Authors Affiliations
  1. 1. Institute of Neurophysiology, University of Cologne, Robert-Koch Str. 39, Cologne, 50931, Germany
  2. 2. International Stem Cell Academy, Cologne/Dusseldorf, Germany
  3. 3. International Center for Personalized Medicine, Dusseldorf, Germany
  4. 4. Cancer Research Center, Tehran University of Medical Sciences, Tehran, Iran

Source: Cellular Physiology and Biochemistry Published:2019


Abstract

In the recent decades, cardiovascular diseases emerged as the major leading cause of human mortality. However, current clinical approaches still do not encompass a thorough therapeutic solution for improving heart function of the patients who suffered an extensive myocardial injury. Based on this status quo, stem cells could become a novel option, as a natural source of the new myocardium lineage cells, being capable of paracrine factors secretion, protection or even regeneration of the damaged heart muscle. Efficient stem cell-based therapy of the heart should lead to repair or/and replacement of the degenerated tissue with functional myocardial and endothelial cells. Hereon, various types of pluripotent and multipotent stem cells have been already studied in the pre-clinical and clinical settings, demonstrating their cardiomyogenic and regenerative potential. In this context, as a type of male adult stem/progenitors, spermatogonial stem cells feature a remarkable ability for a formation of cardiovascular lineages, based on our own observations. Presented data supports the presumption, that spermatogonial stem cells not only have a suitable capacity to generate functional heart cells but can also potentially improve the function of an injured myocardium. In this review article, we first describe the essential molecular and pathophysiological mechanisms involved in the heart tissue injury. Afterwards, based on our ongoing study, we review the impact of the stem cell technologies on the regeneration therapy in cardiovascular and myocardial diseases. Particular emphasis is being put on the usability of spermatogonial stem cells in cardiac therapy. © 2019 The Author(s).
Other Related Docs
10. Stem Cells and Heart Tissue Regeneration, Nanomedicine for Ischemic Cardiomyopathy: Progress# Opportunities# and Challenges (2020)
16. Micrornas and Exosomes: Cardiac Stem Cells in Heart Diseases, Pathology Research and Practice (2022)
21. Application of Nanomaterials in Three-Dimensional Stem Cell Culture, Journal of Cellular Biochemistry (2019)
27. Regulation of Cardiac Stem Cells by Micrornas: State-Of-The-Art, Biomedicine and Pharmacotherapy (2019)