Isfahan University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share this content! On (X network) By
Nanocrystalline Cellulose-Hyaluronic Acid Composite Enriched With Gm-Csf Loaded Chitosan Nanoparticles for Enhanced Wound Healing Publisher Pubmed



Karimi Dehkordi N1 ; Minaiyan M2 ; Talebi A3 ; Akbari V4 ; Taheri A1
Authors
Show Affiliations
Authors Affiliations
  1. 1. Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
  2. 2. Department of Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
  3. 3. Department of Clinical Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
  4. 4. Department of Pharmaceutical Biotechnology, Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran

Source: Biomedical Materials (Bristol) Published:2019


Abstract

In recent years, applications of biopolymers such as hyaluronic acid (HA) for wound dressing have attracted more attention. However, the poor mechanical properties of HA-based wound dressings limit their clinical applications. Incorporation of reinforcing agents such as nanocrystalline cellulose (CNC) in HA-based wound dressings can improve their mechanical properties. In addition, controlled delivery of growth factors to the wound site using nanoparticles can significantly improve the healing process. In this study, we focus on development and characterization of a novel CNC reinforced HA-based composite containing chitosan nanoparticles loaded with GM-CSF (CNC-HA/GM-CSF-Chi-NPs composite) as an effective wound dressing. CNC-HA/GM-CSF-Chi-NPs composite showed some physicochemical characteristics such as appropriate mechanical properties, high swelling capacity (swelling ratio: 2622.1% ± 35.2%) and controlled release of GM-CSF up to 48 h which make it an excellent candidate for wound dressing. In vivo investigation showed that, after 13 d, the wounds covered with CNC-HA/GM-CSF-Chi-NPs composite could reach to nearly full wound closure and complete re-epithelialization compared to the normal saline treated wounds which exhibited nearly 70% of wound size reduction. Furthermore, the CNC-HA/GM-CSF-Chi-NPs composite treated wounds exhibited significantly lower inflammatory reaction, enhanced re-epithelialization and improved granulation tissue formation compared with CNC-HA/Chi-NPs composite treated wound; it might be due to positive effects of GM-CSF on the wound healing process. Our results suggest that CNC-HA/GM-CSF-Chi-NPs composite can be potentially applied in clinical practice for wound treatment. © 2019 IOP Publishing Ltd.
Other Related Docs
9. A Novel Bilayer Drug-Loaded Wound Dressing of Pvdf and Phb/Chitosan Nanofibers Applicable for Post-Surgical Ulcers, International Journal of Polymeric Materials and Polymeric Biomaterials (2019)
37. Nucleic Acid-Based Therapeutics for Dermal Wound Healing, International Journal of Biological Macromolecules (2022)
40. Effects of Nanozeolite/Starch Thermoplastic Hydrogels on Wound Healing, Journal of Research in Medical Sciences (2017)