Tehran University of Medical Sciences

Science Communicator Platform

Stay connected! Follow us on X network (Twitter):
Share By
Global, Regional, and National Age-Sex Specific Mortality for 264 Causes of Death, 1980–2016: A Systematic Analysis for the Global Burden of Disease Study 2016 Publisher Pubmed



Naghavi M1 ; Abajobir AA5 ; Abbafati C7 ; Abbas KM8 ; Abdallah F9 ; Abera SF12 ; Aboyans V13 ; Adetokunboh O14 ; Arnlov J4, 20 ; Afshin A1 ; Agrawal A15, 16 ; Kiadaliri AA17 ; Ahmadi A19, 23 ; Ahmed MB24 Show All Authors
Authors
  1. Naghavi M1
  2. Abajobir AA5
  3. Abbafati C7
  4. Abbas KM8
  5. Abdallah F9
  6. Abera SF12
  7. Aboyans V13
  8. Adetokunboh O14
  9. Arnlov J4, 20
  10. Afshin A1
  11. Agrawal A15, 16
  12. Kiadaliri AA17
  13. Ahmadi A19, 23
  14. Ahmed MB24
  15. Aichour AN25
  16. Aichour I27
  17. Aichour MTE26
  18. Aiyar S1
  19. Aleyadhy A28, 29
  20. Alahdab F30, 31
  21. Alaly Z32
  22. Alam K1
  23. Alam N33, 36
  24. Alam T33, 34
  25. Alene KA37, 39
  26. Ali SD40, 41, 42
  27. Alizadehnavaei R43
  28. Alkaabi JM45
  29. Alkerwi A46
  30. Alla F47
  31. Allebeck P21, 333
  32. Allen C1
  33. Alraddadi R48
  34. Alsharif U49
  35. Altirkawi KA28
  36. Alvisguzman N50
  37. Amare AT52
  38. Amini E53, 55
  39. Ammar W61
  40. Amoako YA62
  41. Anber N63
  42. Andersen HH64
  43. Andrei CL65
  44. Androudi S66
  45. Ansari H67
  46. Antonio CAT68
  47. Anwari P69
  48. Arora M1
  49. Artaman A70
  50. Aryal KK71, 72
  51. Asayesh H73
  52. Asgedom SW11
  53. Atey TM11
  54. Avilaburgos L74
  55. Avokpaho EFGA75, 76
  56. Awasthi A77
  57. Quintanilla BPA78, 79
  58. Bejot Y80
  59. Babalola TK81
  60. Bacha U82
  61. Balakrishnan K83
  62. Barac A85
  63. Barboza MA86, 87
  64. Barkercollo SL88
  65. Barquera S74
  66. Barregard L89
  67. Barrero LH90
  68. Baune BT1
  69. Bedi N91
  70. Beghi E92
  71. Bekele BB38, 93
  72. Bell ML94
  73. Bennett JR1
  74. Bensenor IM96, 179
  75. Berhane A97
  76. Bernabe E99
  77. Betsu BD1
  78. Beuran M100
  79. Bhatt S101
  80. Biadgilign S103
  81. Bienhof K281, 282
  82. Bikbov B104
  83. Bisanzio D107
  84. Bourne RRA109
  85. Breitborde NJK110
  86. Bulto LNB111
  87. Bumgarner BR1
  88. Butt ZA112
  89. Cardenas R114
  90. Cahuanahurtado L74
  91. Cameron E105
  92. Campuzano JC74
  93. Car J113
  94. Carrero JJ22
  95. Carter A1
  96. Casey DC1
  97. Castanedaorjuela CA115, 116, 117
  98. Catalalopez F118
  99. Charlson FJ5, 119
  100. Chibueze CE1, 120
  101. Chimedochir O1, 121
  102. Chisumpa VH123
  103. Chitheer AA124
  104. Christopher DJ1
  105. Ciobanu LG51
  106. Cirillo M126
  107. Cohen AJ127
  108. Colombara D1
  109. Cooper C106, 128, 129
  110. Cowie BC130, 131
  111. Criqui MH136
  112. Dandona L138
  113. Dandona R138
  114. Dargan PI139
  115. Das Neves J1, 140, 141, 413
  116. Davitoiu DV65
  117. Davletov K141, 144, 145
  118. De Courten B146
  119. Degenhardt L147
  120. Deiparine S1
  121. Deribe K1
  122. Deribew A107, 148, 150
  123. Dey S1
  124. Dicker D1
  125. Ding EL152
  126. Djalalinia S154
  127. Do HP1
  128. Doku DT156, 157
  129. Douwesschultz D1
  130. Driscoll TR35
  131. Dubey M158
  132. Duncan BB159, 160
  133. Echko M1
  134. Elkhatib ZZ21, 161, 333
  135. Ellingsen CL162
  136. Enayati A163
  137. Erskine HE5, 119
  138. Eskandarieh S166
  139. Esteghamati A54
  140. Ermakov SP164, 165
  141. Estep K1
  142. Sa Farinha CS169, 170
  143. Faro A171
  144. Farzadfar F55
  145. Feigin VL172
  146. Fereshtehnejad SM23
  147. Fernandes JC173
  148. Ferrari AJ5, 119
  149. Feyissa TR174
  150. Filip I175
  151. Finegold S1
  152. Fischer F176
  153. Fitzmaurice C2, 177
  154. Flaxman AD1
  155. Foigt N178
  156. Frank T1
  157. Fraser M1
  158. Fullman N1
  159. Furst T68, 167, 168
  160. Furtado JM179
  161. Gakidou E1
  162. Garciabasteiro AL180, 181
  163. Gebre T182
  164. Gebregergs GB10
  165. Gebrehiwot TT24
  166. Gebremichael DY183
  167. Geleijnse JM184
  168. Genovamaleras R185, 186
  169. Gesesew HA187
  170. Gething PW108
  171. Gillum RF188
  172. Ginawi IAM189
  173. Giref AZ149
  174. Giroud M190
  175. Giussani G92
  176. Godwin WW1
  177. Gold AL1
  178. Goldberg EM1
  179. Gona PN191
  180. Gopalani SV192
  181. Gouda HN6
  182. Goulart AC95, 193
  183. Griswold M1
  184. Gupta PC194
  185. Gupta R195
  186. Gupta T196
  187. Gupta V198
  188. Haagsma JA199
  189. Hafezinejad N54
  190. Hailu AD149
  191. Hailu GB202
  192. Hamadeh RR203
  193. Hambisa MT111
  194. Hamidi S204, 314
  195. Hammami M205
  196. Hancock J1
  197. Handal AJ206, 225
  198. Hankey GJ208, 209, 210
  199. Hao Y211
  200. Harb HL61
  201. Hareri HA10, 149
  202. Hassanvand MS56
  203. Havmoeller R23
  204. Hay SI1, 105
  205. He F1
  206. Hedayati MT44
  207. Henry NJ1
  208. Herediapi IB74
  209. Herteliu C212
  210. Hoek HW213, 214
  211. Horino M215
  212. Horita N216
  213. Hosgood HD197
  214. Hostiuc S65
  215. Hotez PJ16
  216. Hoy DG217
  217. Huynh C1
  218. Iburg KM218
  219. Ikeda C1
  220. Ileanu BV212
  221. Irenso AA111
  222. Irvine CMS1
  223. Jurisson M219
  224. Jacobsen KH220
  225. Jahanmehr N204
  226. Jakovljevic MB3, 224
  227. Javanbakht M1, 226
  228. Jayaraman SP1, 226
  229. Jeemon P138, 227
  230. Jha V108, 228, 398
  231. John D229, 402
  232. Johnson CO1
  233. Johnson SC1
  234. Jonas JB405
  235. Kabir Z231
  236. Kadel R232
  237. Kahsay A1
  238. Kamal R234
  239. Karch A234, 235
  240. Karimi SM236
  241. Karimkhani C237
  242. Kasaeian A54, 57
  243. Kassaw NA1
  244. Kassebaum NJ238
  245. Katikireddi SV239
  246. Kawakami N240
  247. Keiyoro PN241, 242
  248. Kemmer L1
  249. Kesavachandran CN233
  250. Khader YS243, 465
  251. Khan EA244, 245
  252. Khang YH246
  253. Khoja ATA247, 248
  254. Khosravi A55
  255. Khosravi MH249, 250, 251
  256. Khubchandani J252
  257. Kieling C159, 253
  258. Kievlan D3
  259. Kim D254
  260. Kim YJ255
  261. Kimokoti RW256
  262. Kinfu Y257
  263. Kissoon N258
  264. Kivimaki M259, 260, 267
  265. Knudsen AK200
  266. Kopec JA258
  267. Kosen S261
  268. Koul PA262, 401
  269. Koyanagi A263
  270. Defo BK264, 265
  271. Kulikof XR1
  272. Kumar GA1
  273. Kumar P1
  274. Kutz M1
  275. Kyu HH1
  276. Lal DK1
  277. Lalloo R6
  278. Lambert TLN266
  279. Lan Q1
  280. Lansingh VC268, 269
  281. Larsson A270
  282. Lee PH271
  283. Leigh J35, 427
  284. Leung J3, 5
  285. Levi M272
  286. Li Y273
  287. Kappe DL1
  288. Liang X274
  289. Liben ML275
  290. Lim SS1
  291. Liu A1
  292. Liu PY1
  293. Liu Y276
  294. Lodha R277
  295. Logroscino G278
  296. Lorkowski S279, 280
  297. Lotufo PA96, 179
  298. Lozano R74
  299. Lucas TCD105
  300. Ma S1
  301. Macarayan ERK283, 284, 285
  302. Maddison ER1
  303. Abd El Razek MM285
  304. Majdan M286
  305. Majdzadeh R58, 287
  306. Majeed A102
  307. Malekzadeh R59
  308. Malhotra R277
  309. Malta DC331
  310. Manguerra H1
  311. Manyazewal T288
  312. Mapoma CC122
  313. Marczak LB1
  314. Markos D289
  315. Martinezraga J290, 291
  316. Martinsmelo FR292
  317. Martopullo I1
  318. Mcalinden C293, 294
  319. Mcgaughey M295
  320. Mcgrath JJ296
  321. Mehata S297
  322. Meier T298
  323. Meles KG10
  324. Memiah P299
  325. Memish ZA300, 301
  326. Mengesha MM111
  327. Mengistu DT11
  328. Menota BG149
  329. Mensah GA302
  330. Meretoja A475
  331. Meretoja TJ133, 303, 304
  332. Millear A1
  333. Miller TR305, 306
  334. Minnig S1
  335. Mirarefn M307
  336. Mirrakhimov EM308, 309
  337. Misganaw A1
  338. Mishra SR6, 310
  339. Mohammad KA311
  340. Mohammadi A1
  341. Mohammed S313
  342. Mokdad AH1
  343. Mola GLD315
  344. Mollenkopf SK1
  345. Molokhia M99
  346. Monasta L342
  347. Hernandez JCM74
  348. Montico M316
  349. Mooney MD1
  350. Moradilakeh M318
  351. Moraga P319
  352. Morawska L320
  353. Morrison SD3
  354. Morozof C1
  355. Mountjoyvenning C1
  356. Mruts KB98
  357. Muller K1
  358. Murthy GVS137, 321
  359. Musa KI322
  360. Nachega JB14, 323
  361. Naheed A324
  362. Naldi L325
  363. Nangia V326
  364. Nascimento BR327, 328, 329
  365. Nasher JT1
  366. Natarajan G330
  367. Negoi I65, 100
  368. Ngunjiri JW332
  369. Nguyen CT155
  370. Nguyen G1
  371. Nguyen M1
  372. Nguyen QL155
  373. Nguyen TH155
  374. Nichols E1
  375. Ningrum DNA334
  376. Nong VM1
  377. Noubiap JJN335, 336
  378. Ogbo FA337
  379. Oh IH338
  380. Okoro A339
  381. Olagunju AT51, 81
  382. Olsen HE1
  383. Olusanya BO340
  384. Olusanya JO340
  385. Ong K1
  386. Opio JN341
  387. Oren E1
  388. Ortiz A343
  389. Osman M153, 344
  390. Ota E345, 346
  391. Mahesh PA246
  392. Pacella RE347
  393. Pakhale S348, 349
  394. Pana A212
  395. Panda BK1
  396. Jonas S230, 350
  397. Papachristou C49
  398. Park EK351
  399. Patten SB352
  400. Patton GC135
  401. Paudel D353
  402. Paulson K1
  403. Pereira DM142
  404. Perezruiz F354, 355
  405. Perico N104
  406. Pervaiz A356, 357
  407. Petzold M358
  408. Phillips MR359
  409. Pigott DM1
  410. Pinho C1
  411. Plass D360
  412. Pletcher MA1
  413. Polinder S199
  414. Postma MJ361
  415. Pourmalek F258
  416. Purcell C1
  417. Qorbani M362
  418. Radfar A363
  419. Rafay A364, 365
  420. Rahimimovaghar V60
  421. Rahman M366
  422. Ur Rahman MH1
  423. Rai RK367
  424. Ranabhat CL368, 369
  425. Rankin Z1
  426. Rao PC1
  427. Rath GK277
  428. Rawaf S102
  429. Ray SE1
  430. Rehm J370, 371
  431. Reiner RC1
  432. Reitsma MB1
  433. Remuzzi G372, 373
  434. Rezaei S18
  435. Rezai MS44
  436. Rokni MB60
  437. Ronfani L316
  438. Roshandel G374
  439. Roth GA1
  440. Rothenbacher D375
  441. Ruhago GM376
  442. Rizwan SA1
  443. Saadat S60
  444. Sachdev PS147, 377
  445. Sadat N1
  446. Safdarian M60
  447. Saf S221, 222
  448. Safiri S205, 378
  449. Sagar R1
  450. Sahathevan R379, 380
  451. Salama J1
  452. Salamati P35, 427
  453. Salomon JA151
  454. Samy AM381, 382
  455. Sanabria JR383, 384
  456. Sancheznino MD1, 385
  457. Santomauro D5, 119
  458. Santos IS1
  459. Milicevic MMS84
  460. Sartorius B386, 388
  461. Satpathy M389
  462. Shahraz S396
  463. Schmidt MI1
  464. Schneider IJC390
  465. Schulhoferwohl S391
  466. Schutte AE388, 392
  467. Schwebel DC393
  468. Schwendicke F394
  469. Sepanlou SG59
  470. Servanmori EE74
  471. Shackelford KA1
  472. Shaikh MA395
  473. Shamsipour M56
  474. Shamsizadeh M397
  475. Islam SMS1, 324
  476. Sharma J399
  477. Sharma R400
  478. She J1
  479. Sheikhbahaei S54
  480. Shey M1
  481. Shi P1
  482. Shields C1
  483. Shigematsu M403, 404
  484. Shiri R1
  485. Shirude S1
  486. Shiue I406
  487. Shoman H102
  488. Shrime MG407
  489. Sigfusdottir ID408
  490. Silpakit N1
  491. Silva JP143
  492. Singh A1
  493. Singh JA393
  494. Skiadaresi E409, 410
  495. Sligar A1
  496. Smith A1
  497. Smith DL1
  498. Smith M1
  499. Sobaih BHA411
  500. Soneji S412
  501. Sorensen RJD1
  502. Soriano JB414
  503. Sreeramareddy CT415
  504. Srinivasan V1
  505. Stanaway JD1
  506. Stathopoulou V416
  507. Steel N417, 418
  508. Stein DJ419
  509. Steiner C1
  510. Steinke S420
  511. Stokes MA421
  512. Strong M422
  513. Strub B1
  514. Subart M1
  515. Sufyan MB313
  516. Sunguya BF376
  517. Sur PJ1
  518. Swaminathan S424
  519. Sykes BL425
  520. Tabaresseisdedos R117
  521. Tadakamadla SK426
  522. Takahashi K427
  523. Takala JS428, 429
  524. Talongwa RT430
  525. Tarawneh MR431
  526. Tavakkoli M312, 432
  527. Taveira N433, 434
  528. Tegegne TK435
  529. Tehranibanihashemi A317
  530. Temsah MH1
  531. Terkawi AS436, 437, 438
  532. Thakur JS439
  533. Thamsuwan O440
  534. Thankappan KR44
  535. Thomas KE1
  536. Thompson AH1
  537. Thomson AJ441
  538. Thrift AG146
  539. Tobegai R442, 443
  540. Topormadry R444
  541. Torre A1
  542. Tortajada M445, 447
  543. Towbin JA446, 448, 449, 450
  544. Tran BX1
  545. Troeger C1
  546. Truelsen T451
  547. Tsoi D1
  548. Tuzcu EM438
  549. Tyrovolas S452
  550. Ukwaja KN453
  551. Undurraga EA1, 291, 454
  552. Updike R1
  553. Uthman OA455
  554. Uzochukwu BSC454, 456
  555. Van Boven JFM213
  556. Vasankari T457
  557. Venketasubramanian N458
  558. Violante FS459
  559. Vlassov VV460
  560. Vollset SE162, 201, 335
  561. Vos T1
  562. Wakayo T24
  563. Wallin MT461, 462
  564. Wang YP463
  565. Weiderpass E464, 466
  566. Weintraub RG134, 467
  567. Weiss DJ108
  568. Werdecker A468
  569. Westerman R469
  570. Whetter B1
  571. Whiteford HA5, 119
  572. Wijeratne T33, 470
  573. Wiysonge CS14, 471
  574. Woldeyes BG137
  575. Wolfe CDA472
  576. Woodbrook R1
  577. Workicho A473
  578. Xavier D474
  579. Xiao Q1
  580. Xu G1
  581. Yaghoubi M476
  582. Yakob B387
  583. Yano Y477
  584. Yaseri M60, 223
  585. Yimam HH478
  586. Yonemoto N479
  587. Yoon SJ480
  588. Yotebieng M481
  589. Younis MZ482
  590. Zaidi Z483
  591. El Sayed Zaki M63
  592. Zegeye EA484
  593. Zenebe ZM11
  594. Zerfu TA485
  595. Zhang AL486
  596. Zhang X207, 487
  597. Zipkin B1
  598. Zodpey S138
  599. Lopez AD132
  600. Murray CJL1, 125

Source: The Lancet Published:2017


Abstract

Background: Monitoring levels and trends in premature mortality is crucial to understanding how societies can address prominent sources of early death. The Global Burden of Disease 2016 Study (GBD 2016) provides a comprehensive assessment of cause-specifc mortality for 264 causes in 195 locations from 1980 to 2016. This assessment includes evaluation of the expected epidemiological transition with changes in development and where local patterns deviate from these trends. Methods: We estimated cause-specifc deaths and years of life lost (YLLs) by age, sex, geography, and year. YLLs were calculated from the sum of each death multiplied by the standard life expectancy at each age. We used the GBD cause of death database composed of: vital registration (VR) data corrected for under-registration and garbage coding; national and subnational verbal autopsy (VA) studies corrected for garbage coding; and other sources including surveys and surveillance systems for specifc causes such as maternal mortality. To facilitate assessment of quality, we reported on the fraction of deaths assigned to GBD Level 1 or Level 2 causes that cannot be underlying causes of death (major garbage codes) by location and year. Based on completeness, garbage coding, cause list detail, and time periods covered, we provided an overall data quality rating for each location with scores ranging from 0 stars (worst) to 5 stars (best). We used robust statistical methods including the Cause of Death Ensemble model (CODEm) to generate estimates for each location, year, age, and sex. We assessed observed and expected levels and trends of cause-specifc deaths in relation to the Socio-demographic Index (SDI), a summary indicator derived from measures of average income per capita, educational attainment, and total fertility, with locations grouped into quintiles by SDI. Relative to GBD 2015, we expanded the GBD cause hierarchy by 18 causes of death for GBD 2016. Findings: The quality of available data varied by location. Data quality in 25 countries rated in the highest category (5 stars), while 48, 30, 21, and 44 countries were rated at each of the succeeding data quality levels. Vital registration or verbal autopsy data were not available in 27 countries, resulting in the assignment of a zero value for data quality. Deaths from non-communicable diseases (NCDs) represented 72·3% (95% uncertainty interval [UI] 71·2-73·2) of deaths in 2016 with 19·3% (18·5-20·4) of deaths in that year occurring from communicable, maternal, neonatal, and nutritional (CMNN) diseases and a further 8·43% (8·00-8·67) from injuries. Although age-standardised rates of death from NCDs decreased globally between 2006 and 2016, total numbers of these deaths increased; both numbers and age-standardised rates of death from CMNN causes decreased in the decade 2006-16 - age-standardised rates of deaths from injuries decreased but total numbers varied little. In 2016, the three leading global causes of death in children under-5 were lower respiratory infections, neonatal preterm birth complications, and neonatal encephalopathy due to birth asphyxia and trauma, combined resulting in 1·80 million deaths (95% UI 1·59 million to 1·89 million). Between 1990 and 2016, a profound shift toward deaths at older ages occurred with a 178% (95% UI 176-181) increase in deaths in ages 90-94 years and a 210% (208-212) increase in deaths older than age 95 years. The ten leading causes by rates of age-standardised YLL signifcantly decreased from 2006 to 2016 (median annualised rate of change was a decrease of 2·89%); the median annualised rate of change for all other causes was lower (a decrease of 1·59%) during the same interval. Globally, the fve leading causes of total YLLs in 2016 were cardiovascular diseases; diarrhoea, lower respiratory infections, and other common infectious diseases; neoplasms; neonatal disorders; and HIV/AIDS and tuberculosis. At a fner level of disaggregation within cause groupings, the ten leading causes of total YLLs in 2016 were ischaemic heart disease, cerebrovascular disease, lower respiratory infections, diarrhoeal diseases, road injuries, malaria, neonatal preterm birth complications, HIV/AIDS, chronic obstructive pulmonary disease, and neonatal encephalopathy due to birth asphyxia and trauma. Ischaemic heart disease was the leading cause of total YLLs in 113 countries for men and 97 countries for women. Comparisons of observed levels of YLLs by countries, relative to the level of YLLs expected on the basis of SDI alone, highlighted distinct regional patterns including the greater than expected level of YLLs from malaria and from HIV/AIDS across sub-Saharan Africa; diabetes mellitus, especially in Oceania; interpersonal violence, notably within Latin America and the Caribbean; and cardiomyopathy and myocarditis, particularly in eastern and central Europe. The level of YLLs from ischaemic heart disease was less than expected in 117 of 195 locations. Other leading causes of YLLs for which YLLs were notably lower than expected included neonatal preterm birth complications in many locations in both south Asia and southeast Asia, and cerebrovascular disease in western Europe. Interpretation: The past 37 years have featured declining rates of communicable, maternal, neonatal, and nutritional diseases across all quintiles of SDI, with faster than expected gains for many locations relative to their SDI. A global shift towards deaths at older ages suggests success in reducing many causes of early death. YLLs have increased globally for causes such as diabetes mellitus or some neoplasms, and in some locations for causes such as drug use disorders, and confict and terrorism. Increasing levels of YLLs might refect outcomes from conditions that required high levels of care but for which efective treatments remain elusive, potentially increasing costs to health systems. Copyright © 2017 The Author(s). Published by Elsevier Ltd.
Other Related Docs